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ABSTRACT

Al-Khateeb, Huda Turki. On the Use of Experimental Design in Metamodling of Analog
Integrated Circuits. MSc. Thesis, Yarmouk University, 2017. (Supervisor: Dr. Sami Al-
Hamdan, Co-supervisor: Prof. Husam Hamad)

A metamodel or surrogate model is a model of a model. The process of generating such
metamodels is called metamodeling. A model is an abstraction of a phenomenon in the real
world such as computer simulators.  Thus, a metamodel is a simplified abstraction of the
original model that makes complex computer simulations of the original model simpler, yet
faster while keeping acceptable accuracy. Metamodels have become widely used across
engineering and science disciplines. A successful metamodel requires careful choosing of
appropriate experimental designs. An experimental design is a set of design variable values
(inputs) that are used to generate a metamodel for a response as a function of the design
variables. Analog electronic circuit optimization is usually a computationally intensive
problem. The use of metamodeling in this class of problems to replace simulators is a promising
technique for time reduction of circuit optimization. One of the criteria that the metamodeling
techniques need to be tested on is accuracy. Accuracy is largely dependent on the type of the
metamodel and the computer experimental design used to generate the metamodel. In this
research, two of the most popular metamodeling types are investigated: the classical response
surface models (RSMs), and the more recent Kriging metamodels, with two main computer
experimental design methods: Latin hypercube (LHC) sampling and minimum bias designs
(MBDs). Each method is applied in this work to model circuit performance parameters of
analog electronic circuits, ranging from simple electronic filters to analog integrated circuits
such as operational amplifiers. The results of this investigation show that the use of RSMs
metamodels combined with MBDs sampling is superior to the more popular Kriging technique
combined with LHC sampling. This work should direct the analog integrated circuit design
research community to the most suitable methodology in both metamodel types and

experimental designs to use.

Keywords: Metamodel, Kriging, Response Surface Model (RSM), Minimum bias design
(MBD), Latin hypercube (LHC), Root mean square error (RMSE).
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CHABTER I: INTRODUCTION

1.1 Introduction to metamodeling and experimental designs

Traditional simulation methods used in computer-aided design (CAD) of analog
integrated circuits (ICs) is time consuming, especially if the number of active components
is large [1]. The number of transistors per unit area is on the rise; hence, the design and
manufacture of these ICs take long time. Computer simulations are usually involved, and
the complexity of the circuit determines the time needed to design the circuit. It may take
from a few seconds or minuets to several hours or days [2]. Metamodels (surrogate
models) of circuit performance parameters are widely used instead of simulators to reduce

the time of circuit design optimization, and hence allow faster production of analog ICs.

A metamodel is an approximation of a physical/electrical model which approximates as
closely as possible the original model; e.g., to characterize the performance parameters
of a circuit [1]. In other words, it is a mathematical model that uses samples to generate
a function that estimates the relation between the design variables and the performance
parameters of the circuit under investigation [2]. These approximation models are used
in the design process to reduce the design cycle time and cost by predicting the output of

an expensive computer code at many points in the design variables space [3].

Different types of metamodels are used in the literature to model analog integrated circuits
performance parameters such as Kriging [1, 4, and 5]; Response Surface Models (RSMs)
[6], Radial Bases Functions (RBF) [4], rational functions [4] and support vector machines

(SVM) [2].
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Metamodels have to be calibrated to achieve operable accuracy levels and to deal with
specific user requirements. Computer experimental designs are used to determine
combinations of design variables to fit these metamodels. Different experimental designs
to build metamodels are used in the literature including Latin hypercube (LHC) sampling

[1, 4], factorial designs [5], Box-Behnken designs [5] and minimum bias designs (MBDSs)

[6].

The statistics given in the next section indicate more and more researches combine
Kriging metamodels with LHC sampling to build metamodels for circuit performance
parameters. It is widely believed that this combination requires less sample points and

provides more accuracy than other metamodels.

In this work, we investigate if the increasing popularity for using Kriging metamodels in
analog ICs design is justified in terms of accuracy, by comparison to the classical RSM
metamodels. However, unlike most recent work that derives RSM metamodels using

LHCs, MBs are used in this work to build RSMs.

1.2 Research Statistics

Figure (1.1) summarizes Google Scholar search results showing the number of research

papers that use Kriging and RSM metamodels for the period (2000-2015), inclusively.

The following statistics are deduced from the results in Figure (1.1):

e For Kriging metamodels, the number of articles that mention Kriging metamodels
has increased from 321 articles during (2000-2007) to 1340 articles for (2008-

2015), i.e., the increase is by 3.2 folds.
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e For RSM metamodels, the number of articles that referred to RSM metamodels
has increased from 196 articles during (2000-2007) to 425 articles for (2008-
2105) i.e., the increase is by 0.17 folds.

e In (2000-2007), 62% of articles on electronic circuits relate to Kriging
metamodels by comparison to RSM metamodels, while this has increased to 76%

for the period (2008-2015).

The above results are summarized in Figure (1.2). Based on these statistics, Kriging
metamodels are more popular than RSM in articles concerning metamodeling in

electronic circuits. Moreover, this popularity is on the rise.

1400
1200
1000
800
600
400

200

search phrase:"Kriging"and "circuits" search phrase:"RSM"and"circuits"

W 2000-2007 112008-2015

Figure 1.1: Google search results for the number of articles on electronic circuits using
Kriging and RSM metamodels for the period 2000-2015.
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2000-2007 2008-2015

WREM - Kriging mREM o Kriging

Figure 1.2: percentage of articles on electronic circuits using Kriging and RSM
metamodels in two different time periods.

A Similar Google Scholar search is conducted for LHC and MBD experimental design
methods, with the results summarized in Figure (1.3) for the period (2007-2015),

inclusively.

1400
1200
1000
800
600
400

200
search phrase:"Latin search phrase:"minimum bias
hypercube"and"circuits" design"and"circuits"

W 2000-2007 11 2008-2015

Figure 1.3: Google search results for the number of articles on electronic circuits using
LHC and MBD experimental designs for the period 2000-2015.
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The following statistics based on the results in Figure (1.3) indicate that:

e For the LHC sampling method, the number of articles that mention LHC
experimental design has increased from 266 articles during (2000-2007) to 1240
articles for (2008-2015), i.e., the increase is by 3.6 folds.

e For the MBD sampling method, the number of articles that mention MBD
experimental design has increased from 3 articles during (2000-2007) to 4 articles
for (2008-2015), i.e., the increase is by 0.33 folds.

¢ In (2000-2007), 98.8% of articles on electronic circuits refer to LHC sampling
method by comparison to MBD sampling method, while this has increased

to 99.7% for the period (2008-2015).

In summary, it is clear from the research statistics presented in this section that Kriging
metamodeling and LHC sampling are much more widely used in the literature on
electronic circuits by comparison to the classical RSMs and MBDs. More discussion

about this issue is presented in Chapter 3.

1.3 Research contribution

In the design of analog integrated circuits, analysis to determine the required circuit
performance parameters is executed using time-consuming simulations. A lot of time is
consumed to determine and satisfy circuit performance parameters at different conditions.
This analysis should be performed rapidly because there are some strict time-to-market

restrictions in the industrial sector [1, 2].

For these reasons, the use of metamodels (surrogate models) has become an effective

technique for estimating the behavior of a circuit with high accuracy. Using suitable
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metamodels instead of the traditional simulation tools gives acceptable results in much

shorter periods [1, 2].

The objective of this work is to shed light on the proper directions in metamodeling
techniques and experimental design methods for analog integrated circuits and their
application in the design of such circuits. In particular, we investigate if the increasing
popularity for using Kriging metamodels with LHC sampling in electronic circuit design

is justified in terms of accuracy by comparison to RSM metamodels with MBD sampling.

1.4 Structure of the thesis

This thesis is divided into six chapters. An outline of the remaining chapters is as follows:

e Chapter 2 summarizes results in recent published research in the area of
metamodeling, especially in analog integrated circuit design.

e Experimental design methodologies are presented in Chapter 3, which includes
MATLAB codes to generate LHC and MBD designs, and discusses issues related
to metamodel types, with emphasis on analytical formulation of Kriging and RSM

metamodels.

e Analog circuits ranging from simple filters to the most commonly used analog IC
(the operational amplifier) are presented in Chapter4, comparing Kriging with
LHC experimental design and RSM with MBDs.

e Chapter 5 concludes the thesis, giving directions for future work.

www.manaraa.com



CHAPTER II: LITERATURE REVIEW

Metamodels are not new; they have been in use for more than sixty years [7, 8]. Most
commonly in recent literature, metamodels are used to replace simulators in the design of
engineering systems, as a way to minimize the time used for estimation of system

performance parameters.

Traditionally, the default metamodeling technique is polynomial regression metamodels
[7, 8]; nowadays more and more different techniques of metamodeling are used to reduce

computation time for engineering system design.

Different types of metamodels are used in analog circuit design. These types include
Kriging, Response Surface Models (RSMs), Radial Bases Functions, Rational Functions,
Support Vector Machines (SVM), etc. In addition, different experimental designs to build
metamodels of integrated circuit performance parameters are used; these include simple

random sampling, classical sampling, LHCs, MBDs, etc.

H. You [1] explored the attributes of combining classical Kriging metamodels with LHC
sampling method, and RSM metamodels with classical Design of Experiment (DOE)
sampling methods. In this reference, two circuit performance parameters of an amplifier
are characterized: power dissipation (Pc) and bandwidth (BW). The result shows that the
Kriging metamodel with LHC sampling method needs less sample points and provides
higher accuracy than quadratic RSM metamodels with classical Design of Experiment (

DOE) sampling methods.

A. Ciccazzo, et al in [2] compared between two metamodels, support vector machines
(SVM) and RSMs. These metamodels are compared on WiCkeD tool, and the conclusion

was that the two metamodels give quite similar results.
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H. Zhong-Hue, and K. Zhang, in [3] focuses on exploring the differences between the
two-metamodeling techniques: Kriging and polynomial regression.  The goal is to
discover which technique is most suitable. Regarding the use of experimental design,
LHC sampling and random design sampling are used to test the performance of each
metamodeling technique with four different simulation models. The overall results show
that Kriging metamodeling has a better performance of speed and accuracy on average

than regression metamodeling.

In [4], Kriging, radial bases functions (RBF), and rational functions metamodels
combined with LHC were applied to model performance parameters of a transimpedance
amplifier circuit. The authors compared results of these three metamodeling types to find
an optimal solution in a short design time. Three circuit performance parameters are
characterized for the transimpedance amplifier: bandwidth (BW), gain (Zg), and power
consumption (pwr). Efficiency for these metamodels are compared, the results show that
the three metamodels are very fast, they take a few seconds to optimize the circuit, but

the rational functions metamodels with LHC was the fastest one.

H. Hamad, and A. Bani Irshaid in [5] constructs a piecewise —Kriging metamodel to
reduce the complexity of variation of the design variables space and thus enhancing
accuracy of the metamodels, by dividing design variables space into several pieces. Two
metamodeling techniques Global-Kriging and piecewise-Kriging metamodels combined
with LHC methods are compared, showing that more accurate metamodels can be

achieved using piecewise- Kriging metamodels.
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H. Hamad, et al in [6] presented techniques for constructing minimum bias response
surface metamodels for deterministic simulation models using minimum bias designs
(MBDs). This technique can be used to build MBDs for higher-dimension spaces and
higher-order MBDs. Analytic examples are used in this work to demonstrate that the
MBDs sampling combined with RSMs metamodels are potentially superior to the more

popular LHCs sampling combined with RSM metamodels.

A new methodology is presented in [9] that combines the Kriging technique with Ant
Colony Optimization (ACO) algorithm that presents fast optimization of the circuit. This
methodology is examined using an amplifier integrated circuit. The result is that the
Kriging based metamodel is accurate, and (ACO) algorithm improves sense amplifier

precharge time to 3.7 minutes compared with 72 hours.

D. Gorissen, et al in [10] made a comparison of accuracy and scalability of different
metamodels including artificial neural network model (ANN), Kriging, SVM and rational
function models, based on samples for a low noise amplifier LNA of RF circuit block. It
was clear that the ANN models gave excellent results with SVM functions compared to

other metamodels.

An adaptive RSM-based optimization method for analog circuit sizing is presented in [11]
to reduce the computational cost of designing applications requiring computationally
expensive evaluations. Through application to different test functions and case studies
including a two-stage operational amplifier, the method demonstrated effectiveness
compared to annealing and differential evolution technique. The result was clear that the

ANN models perform best in Kriging
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In [16], as a comparative case study two circuits have been designed : a 180nm LC-VCO
and a 45 nm ring oscillator (RO), to investigate three algorithms to compare the speed of

optimization on polynomial metamodels. The results show that metamodel-based

optimization achieved speed up as high as 21,600x for the LC-VCO circuit and

11,750% for the RO compared to the actual circuit netlist-based (SPICE) optimization.

O. Garitselov, et al in [30] presented a two-tier approach to reduce the design cycle time
by combining accurate metamodeling and intelligent optimization. This paper introduced
an intelligent Bee Colony Optimization (BCO) algorithm to speed up the design-space
exploration for AMS circuits. A 180 nm LC-VCO PLL frequency generation circuit is
used as case study, the result of the design flow was 90% power savings and average of
52% jitter minimization, which have been achieved with a minimal time of 100

simulations to generate polynomial metamodels.

10
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CHAPTER I1l: METAMODELING AND

EXPERIMNTAL DESIGN

As has been emphasized in this thesis so far, a metamodel is an interpolation function that
represents the relation between design variables (inputs) and system performance
parameters (outputs) of a simulation model to estimate the behavior of a system as a black
box model. These metamodels are used instead of the more time consuming simulators
to reduce the time of system design optimization [12]. The goal of this chapter is to
present the different metamodel types and methodologies, including experimental design

techniques. The chapter starts by outlining the metamodeling steps.

3.1 Metamodeling steps

Metamodeling consists of four steps: sampling, fitting, reproducing, and validation; see

Figure (3.1).

Sampling

Fitting

Reproducing

Validation

V

oL fyl_llsl

Figure 3.1: Metamodeling steps.

11
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e Sampling:
Sampling is the way of selecting a pre-determined small number of points in the
design variables space to be used for generating the interpolation function
(metamodel). Choosing the appropriate DOE (i.e. the set of samples) is very
important for accurate metamodel results.

e Fitting:
In this phase, a metamodel is fitted to the set of sample points chosen in the
previous step. The parameters of the chosen metamodel type are adjusted to
minimize error (usually least-square-error).

e Reproducing:
In this phase, the parameters of the metamodel computed in the previous step are
used to give estimation of the response at a wider set of points in the design
variables space.

e Validation:
In this phase, the accuracy of the chosen metamodel is tested against the original
model used usually by a simulator (e.g. SPICE). Accuracy is one of the criteria
that metamodeling techniques are tested on. It is a predictive quality of a
metamodel, i.e. goodness-of-fit between the metamodel and the response. In
statistics, various validation measures exist, e.g., coefficient-of-determination R?,
mean absolute error (MAE), and root mean square error (RMSE) [8]. RMSE - the
most popular validation statistic - is used in this research for metamodel

validation.

RMSE is a measure of the difference between the response predicted by the metamodel

and that used by the actual model in simulators [13]. RMSE is defined as follows:

12
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Where Y; is the actual response at the i,, sample point, Y; is the predicted response by

the metamodel at the same point [12].

To reflect a percentage-wise error, normalization may be used to determine normalized

error NRMSE, e.g.

RMSE

NRMSE = — e e )

|Ymax_ymin|

Ymax, and Ymin are the maximum and minimum values of the response respectively.

Experimental design sampling methods and metamodel types are briefly discussed in the
next sections. For reasons presented in Chapter I, emphasis will be placed on two
metamodel types-Kriging and RSM metamodels, and on two experimental design

methods-LHC sampling and MBDs sampling.

3.2 Experimental design methods

When selecting a metamodel technique, probably the most important issue that has to be
taken into account is the experimental design (the sampling method) of the design
variables space. An experimental design is a software structure that assist users with
designing and exploring experiments and their results, and it involves selecting the right
variations in input design variables to build a model of the performance (response) as a

function of these design variables [8].

In the designing process, exploring all area of the of the design variables space requires

high cost of performing many experiments and it takes long time. Instead, an

13
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experimental design is used to determine the location of a set of sample points in the
design variables space that covers the information gained from the response that is

necessary to fit the metamodel [15].

Currently, there are two different types of experimental designs: ‘classic’ experimental
designs, and ‘modern’ experimental designs. Classic experimental designs such as
factorial designs, Box-Behnken designs, and composite central designs [5] are
traditionally used in response surface models, while modern experimental designs such
as LHC [16, 17] and Orthogonal Array Design (OAD) [5] are mostly used with Kriging
metamodels. In this research, two experimental designs are investigated: LHC and MBD

sampling.

3.2.1 Latin hypercube sampling method

Latin hypercube (LHC) sampling is a type of stratified sampling (sampling from a
population). It works by controlling the way that random samples are generated for a
probability distribution [16, 17]. An LHC sample is generated by dividing the design
variables space into subintervals and choosing randomly a sample in these subintervals,
and ensuring that every design variable is used exactly once, where each sample covers
one of possible probabilities of all design variables, for example in Figure (3.2) one square
in each row and column contains one sample chosen randomly in the space covered by

that square [3].

14
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Figure 3.2: Two-dimensional LHC [2].

There are several combinations to choose the sampling points while preserving the
conditions imposed on LHC method. The maximum number of combinations for a Latin
hypercube of M divisions and N design variables (i.e., dimensions) can be computed with

the following formula [16]:

M-1 N-1
<1_[(M _ n)> — (MDN™ ooeee (3)
n=0

For example, a Latin Hypercube with M = 4 divisions and N = 2 variables has 24

possible combinations.

In this work, LHC sampling is generated using command “lhsdesign” in MATLAB
software. This command requires a prior knowledge about the number of sample points
to be generated and the number of design variables. It generates sample points with
coordinates of values between 0 and 1; this is called the “coded” variable. The coded
variables are then converted to their true “natural” values of the design variables. For
example: aresistor in an electronic circuit that could have values from 200 Q to 1000 Q

is mapped to values from 0 to 1 in LHC such that 0 in LHC will be the corresponding
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value for 200 and 1 will map to 1000. Generally, the natural values for a variable x are

computed as follows:
XN = XC (XNmax = XNmin) F XCMin «evvevenreneeneeret ettt et et e et et eeeaeeeneann 4)

Where xn and xc are the natural and coded values of the variable x respectively.

3.2.2 Minimum bias designs

When finding an interpolation function using a chosen set of points from the design
variable space, the resulting function will have errors due to two major factors: variance
error which is primarily caused by sampling, and bias error which is caused by the choice
of the interpolating function (e.g. choosing a first order polynomial for a metamodel while
the actual model is of second order nature) [6]. MBD is concerned with the selection of
sample points from the design variable space such that the error caused by the wrong

choice of the metamodel function is minimized.

Box and Draper introduced the minimum bias (all bias) criterion to generate MBDs [19],
with more recent treatment by [6] and [29]. Here statistical design of experiments is used
to select optimal points that minimize bias error in the metamodel approximation. Unlike
classical designs which minimize variance error assuming no bias in the metamodel (i.e.,
the metamodel perfectly matches the complexity of the underlying response), MBDs
automatically minimize the bias error and the mean square error.

The following MBD derivation outline parallels that in [6]:

Let Y(X) be a function in k variables xi, X2 ... xx and Y(B1, X) is an approximation over
the region R in the design variables space. Assuming Y(B1,X) is a polynomial of

degree d,, where
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Y (B, X1) = BiXAT o (5)

X1 is the vector of m elements of powers and products of X1, X2, ...xx of order d, or less,

and B1 is the corresponding m1 coefficients, where

(d1+k)!
—_ W Mas mEs mEs EES EEs EES EES EES REE EEE EEE Eus ESS RSG REG RES RS R R REE EEE N R mEs mEs owEm o (6)

Suppose the true function Y(X) is represented be a Weierstrass polynomial Y (B, X) of

degree d, > d, , where
Y(B,X) = B1X1T + B X2T o e (7)

X1 is as before, B; is the corresponding vector of coefficients, X2 has m, elements of
powers and products of X1, X2, ..., xx of order d, or less but greater than d,, and Bz is the

corresponding vector of m, coefficients, where

(d2 + k)!

[19] uses equation (5) to minimize the average integrated bias—AIB

1 (. - 2
AIB = Vf[Y(B,X) —Y(By, X1)] dx e e vt vttt (9)
R
Where
sz 1 PR TR @ 1)

Then a sufficient condition to minimize AIB is
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M11= 11, MI2 T 12 i e et s e nn s e e (11)
Hi1 and paz are known as the moments of the region R. The m1 x m; elements of piiand

my X m2 elements of pi. are of the form

1

—J. TR PRI, e N7 b SRS @ 12
v R

These moments are said to be of order a; a = a; + a, + - + a; and 1 <a< (d1+ d2).
Similarly, for the N experimental design points, the (m1 X mz) moments Mz and

(m1xm2) moments My of order a; a = a4 + a, + -+ + a; have elements of the form:

N
a a a

Z T T R PP (o 0 )

n=1

Z| =

It can be shown that the number of moments nm, of order a(1 < a < (d1+ d2)) which must
be equalized in accordance with equation (11) to form a MBD in an arbitrarily shaped k-

dimensional region R is

dl+dz2

B (a+ (k—1)!
g, = ; Ty oo (14).

Table (3.1) shows nm values for second to fourth-order MBDs for 2< k <5.

Table3.1: Number of moments in equation (14)

MBD
k 2" order 3 order 4™ order
2 20 35 54
3 55 119 219
4 125 329 714
5 251 791 2001
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Examining the table above reveals that the number n,,of nonlinear equations that must
be satisfied can be prohibitive for large dimensions and high-order MBDs. Fortunately,

the number of such equations can be reduced dramatically by:

e Using symmetrical regions R. For example, for a k-dimensional cuboidal region
with  -1<Xx1, Xo, ... xx<+1, (here, the range -1 to +1 is the coded values for all
variables of the system space) the integration of eq. 12 above reduces to zero for all
odd powers:

1 0 ifany a; is odd
—f XM x,%2 LLx M dx = 1
R (a; +D(ay+1)...(ap +1)

all a; even

To illustrate, suppose it is required to generate a second-order MBD in a two-dimensional
region R. From Table 1, the number of moments that must be equalized in this case is 20.

If no symmetry is used, then the coordinates (x1, X2) = (ai, bi) for 1 <i <10 are

determined by solving the following 20 X 20 system of the nonlinear equations:

e First-order moments:
10

Zai=ij1dx

i=1

10 (15)
Zbi = fozdx
i=1

e Second-order moments:

10

Zaiz = folzdx

i=1
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10 e, (16)

Z a;b; = folxzdx

i=1

10
Zbiz = fozzdx
i=1

e Third-order moments:

e Fourth-order moments:

e Fifth-order moments:

10
Zais = folsdx
i=1
10
Z a;b;* = fo1x24dx
PP U U PO UURURPRRRRPIS (17)
10
5 _ 5
Zbi = sz dx
i=1

The complexity of the above system reduces to the solution of the following 3 x 3

nonlinear system if the symmetrical point sets are used in the ‘cuboidal’ space —1 < x;

20

www.manharaa.com




n, +8

4a% + 4b2 =
a“ + 3
2.2 Mo +8
B D = (18)
4ot +apr =0 O
5

Where ng is the number of center points (x1, x2) = (0, 0).

Table 3.2: Notation used.

Notation Meaning #points Notes
C(0%) A design point at the centre 1 X1 =%, =0
_ ) See Table 3.3
F(u®) Factorial design 2k
fork=3
All k permutations of factorial
] ] ] See Table 3.4
S(uk, vk=e) designs with a variables at u
_ k2k fork=3
and (k—a) variables at v
Table 3.3: F(u*) factorial design for k = 3
x1l==+u X2=+U x3=+uU
-u -u -u
-u -u +u
-u +u -u
-u +u +u
+u -u -u
+u -u +u
+u +u -u
+u +u +u

The point sets in Draper (1960) which are used to form rotatable designs in cuboidal

regions can be useful for MBDs. Based on these point sets, second-, third-, and fourth-
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order MBDs in our work are constructed using combinations of the following sets: C(0%),

F(uk), and S(u*, v*~%). Explanation for this notation is provided in Table (3.4)

In this research second- order minimum bias designs (MBDs) are used to obtain RSM

metamodels (see table 3.5)

Table 3.4: S(u*, v*~%) design for k=3 witha =1

X1=%u X1=+V X1=+V

Xo= %V Xo=%U Xo= %V

X3= %V Xs= %V Xs= U

X1 X2 X3 X1 X2 X3 X1 X2 X3
-u -V -V -v -u -V -V -V -u
-u -V +v -V -u +v -V -V +u
-u +v -V -v +u -V -V +v -u
-u +v +v -v +u +v -V +v +u
+u -V -V +v -u -V +v -V -u
+u -V +v +v -u +v +v -V +u
+u +v -V +v +u -V +v +v -u
+u +v +v +v +U +v +v +v +u
Table 3.5: Second-order MBDs
S(uk, vk-ay

k u v a

2 0.418 0.759 1

3 0.816 0.434 1

4 0.868 0.448 1

5 0.913 0.460 1

More information and details can be found in [6]. Illustrative examples are given in the

next subsection.
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3.2.3 lllustrative example

In this section, a second — order MBD and LHC sample with the same number of design
points as the MBD are generated for a two-dimensional space to clarify experimental

design generation techniques.

Figure (3.3) shows a second -order MBD for two dimensions X1 and X2 generated using

S(u% v*~%) asin Table (3.5).

1

0.8

0.6

0.4 ® ®

0.2

0

X2

-0.2

-0.4 (] (]

-0.6
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-1 -08 06 -04 -02 0 0.2 0.4 0.6 0.8 1

X1

Figure 3.3: second — order MBD
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Figure 3.4: second — order LHC (trial 1)
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Figure 3.5: second — order LHC (trial 2)
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The same number of sample points (i.e., Nine; see Figure 3.3) as the MBD is generated
for the LHC sample. Three sampling trials are shown in Figure (3.4), Figure (3.5), and
figure (3.6).

1:

0.9

0.8

0.7

0.6

X2
[J

0.5

0.4

0.3

0.2

0.1° : : : : : : : : :
01 02 03 04 05 06 07 08 09 1

X1

Figure 3.6: second — order LHC (trial 3)

3.3 Metamodeling types

As mentioned before, a number of metamodel types are available in the literature; e.g.,
Kriging [1, 9], Radial Basis Functions (RBF) [1], Response Surface Models (RSM)[4,
17,18], Multivariate Adaptive Regression Splines (MARS)[6] and Artificial Neural
Networks (ANN)[6]. In this thesis, we limit our discussion to the most widely used

metamodels: Kriging metamodels and RSM.
3.3.1 Kriging metamodels

Kriging metamodels were originally developed in geostatistics by the South African

engineer Danie Krige [14]. Kriging is an interpolation algorithm for spatial data;
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interpolation is a process of finding a value at an unmeasured location from observed data
at surrounding locations [1, 8]. A Kriging model estimates the value of the function at a
given point by calculating a weighted average of the known values of the function in the

surrounding of the point [8].

The Kriging metamodel Y(x) of a response Y (x)is expressed as:

N LCIED (€ R 1€ 2 J RSN € L°)

Where Y(x) is a polynomial of the design variables x, that interpolates the design points.
z(x) is a Gaussian function that represents the stochastic process (realization of a random
process) with zero mean and variance ¢® [19]. The goal is to determine weights i that

minimize the variance.

COV(Z) = G2R(X1, X)) wev vor vor e e e o s e s s e s s s s e e e e e (20)

Where R (xi, X;) is the correlation matrix. More information and details about derivations

of Kriging metamodel can be found in [17].

In this work, mGstat Toolbox [21] is used to construct the Kriging metamodels. To use
the toolbox in MATLAB we simply added the path where mGstat is installed to the
MATALB path. The following example is given to facilitate understanding concepts
related to Kriging metamodeling. The response y(x) here is a fifth—order polynomial,
over x € [-3, 4], where:

y(X) = x® — 15x3 + 20x

26

www.manaraa.com



Five points are selected in the interval [-3, 4] using LHC experimental design (LHC
sampling is discussed in section (3.2.1) to estimate the parameters of the Kriging
metamodel y(x). Figure (3.7) below shows the Kriging metamodel $(x) superimposed

on the response y(x)

150

Kriging metamodel
® | HC sample points
response y(x)

100 -

50

N

-50 AN

NV

-100

-150
-3

Figure 3.7: response y(x) and Kriging metamodel §(x) using 5 samples

3.3.2 Response Surface Models (RSM)

The response surface model (RSM) is a polynomial of a response as a function of the
various inputs (design variables). It is a parametric regression model, which means that
it uses experimental design points to estimate unknown parameters of the polynomial [17,
18].

As it is well known, the behavior of the response surface model depends on the order of
polynomial; so the chosen order of the RSM polynomial is important for the accuracy of

the metamodel [8].
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A second order RSM Y(x) in k—design variables is expressed as:

Y0 = By + T Bxi + AT By Xi Xy 1)

Bo . B; and Bjj are the coefficients (parameters) of the RSM, and xi refers to one of the

k design variables.
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CHAPTER IV: METAMODELING OF ANALOG ICs:

METHODOLOGY, RESULTS, AND DISCUSSION

In this chapter, Kriging metamodel with Latin hypercube (LHC) samples, and RSMs with
MBDs are applied to different analog electronic circuit performance parameters. These
circuits range from a simple filter to an operational amplifier - the most widely used

analog IC.

4.1 Introduction

As mentioned previously, this research focuses on investigating the differences between
the two metamodeling techniques of Kriging with LHC sampling and RSM with MBDs.
The objective is to find which technique is most accurate for analog integrated circuit
design. The statistic used in this work to measure accuracy of metamodeling techniques
is the root-mean-square-error (RMSE), which is the most widely used statistic in

metamodel validation.

This chapter is organized as follows. Section (4.2) outlines the methodology in this work.
In Section (4.3), this research methodology is used to generate performance parameters
of a range of analog circuits. Finally, discussion of the metamodeling results is presented
in Section (4.4).

4.2 Research methodology

Figure (4.1) shows the steps that are used in this work to generate and compare Kriging

and RSM metamodels, using LHC and MBD sampling methods respectively.
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Figure 4.1: Research methodology used for performance parameter metamodeling of
electronic circuits.

The metamodeling procedure starts by selecting the design variables as well as their
ranges; these are usually provided by the user. In the second phase, two types of computer
experimental designs, LHC sampling and MBDs, that were described earlier,
respectively, are used to generate the samples points that are used to fit the two types of
metamodels: Kriging and RSM. Finally, the metamodel validation phase is conducted
by calculating (RMSE) in order to compare the accuracy of the results of the two-

metamodeling activities.

4.3 Experimental results

The research methodology outlined in the previous section is applied to compare RSM
and Kriging metamodels for performance parameters of various electronic circuits,
including a simple passive filter, a BJT amplifier, a MOSFET amplifier, and an

operational amplifier IC.
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4.3.1 Passive filter

The performance parameters of the passive low-pass filter shown in Figure (4.2) are

modeled using the methodology outlined in Section (4.2). Metamodels for the midband

ratio { = V,,:/Vin and the bandwidth (BW) are derived as a function of the five design

variables R1, R2, R3, R4 and C.

vout

YV

—AN—s

R4

11
0

The design variables ranges are given in Table 4.1

Figure 4.2:Passive filter.

Tabel 4.1: design variable ranges for passive filter

Design variable | Min. value | Max. value Unit
R1 20 200 KQ
R2 10 100 KQ
R3 10 100 KQ
R4 10 100 KQ
C 1 10 pf

Firstly, the circuit is modeled using a quadratic RSM in five dimensions. The second-

order MBD in Table (3.5) having 161 sample points is used to determine RSM

metamodels for responses ¢ and BW. A LHC experimental design is then generated

having the same number of sample points as the MBD to fit the Kriging metamodel, LHC
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sampling is repeated to generate 10 different sampling trials with their corresponding

Kriging metamodels. RMSEs for these metamodels are given in Table (4.2), along with

NRMSEs, (the errors normalized to the RSME of RSM metamodel).

Table 4.2: Errors values of RSM and Kriging metamodels of {

RMSE for
RSM Kriging
metamodel e umber | RMSE NRMSE
1 0.160 11.4286
2 0.159 113571
3 0.160 11,4286
0.014 4 0.161 11,5000
5 0.159 113571
6 0.159 113571
7 0.160 11.4286
8 0.161 11,5000
9 0.160 11,4286
10 0.159 113571

The normalized errors NRMSEs in Table (4.2) are plotted in Figure (4.3).

15 T T

®----- ®------ O-——--- & ----- A e ®------ &-——-—- @ ----- & -
10~
L
: R
E ® Kriging
=z ===== mean of normalized RMSE for 10 Krig trials

r

r

4 5

6
Trial Number

Figure 4.3: NRMSE of ¢ for passive filter.
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The average RMSE for the response ( of the filter circuit in Figure (4.3) for the 10 LHC

trials for the Kriging metamodel is 0.1598, while the RMSE for the RSM metamodel is

0.014. This means that RMSE for Kriging metamodel is approximately equal to 11X

RMSE for RSM. Note that the greater RMSE the worse is the model.

RMSEs for the two metamodels for bandwidth (BW) of the passive filter are given in

Table (4.3).

Table 4.3: Errors values of RSM and Kriging metamodels for BW

RMSE for
RSM Kriging

metamodel

Trial number RMSE NRMSE

1 1.378 2.3316

2 1.374 2.3249

3 1.381 2.3367

4 1.379 2.3333

0.591 5 1.377 2.3299

6 1.383 2.3401

7 1.374 2.3249

8 1.383 2.3401

9 1.387 2.3469

10 1.385 2.3435

The normalized RMSEs in Table (4.3) are plotted in Figure (4.4).

5 T T T T T T T T
4.5 — RSM
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Figure 4.4: NRMSEs for BW
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The average RMSE for the filter circuit in Figure (4.4) for the 10 LHC trials of the
Kriging metamodel is 1.3801, while the RMSE for the RSM metamodel is 0.591. This
means that RMSE for Kriging metamodel is approximately equal to 2.33X RMSE of

RSM.

4.3.2 BJT amplifier

Performance parameters of the BJT amplifier shown in Figure (4.5) are modeled using
the methodology outlined in Section (4.2). Metamodels are derived for the midband

gain A = V,,:/Vin, the lower cutoff frequency f;, and the upper cutoff frequency f.
The design variables ranges are given in Table (4.4).

Table 4.4: design variables ranges for BJT amplifier

Design variable | Min. value | Max. value Unit
Cl 1 10 pf
C2 1 10 pf
R 1 10 KQ
I 1 10 mA
V1 .—1

Figure 4.5: BJT amplifier
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Firstly, the circuit performance parameters are modeled using quadratic RSMs in four
dimensions. The second-order MBD in Table (3.5) having 65 sample points is used to
determine responses A, fi, and fy . LHC experimental design is then generated having
the same number of sample points as the MBD to fit the Kriging metamodel; the Kriging
metamodel activity is repeated using 10 LHC sampling trials. RMSEs and NRMSEs for

these metamodels are given in Table (4.5).

Table 4.5: Errors values of RSM and Kriging metamodels for A

RMSE for
RSM Kriging
metamodel e umber | RMSE NRMSE
1 113.804 1.1882
2 111.366 1.1627
3 111.510 1.1642
95.78 4 113.829 1.1884
5 111.274 1.1618
6 111.765 1.1669
7 111.524 1.1644
8 112.317 1.1727
9 111.309 1.1621
10 110.611 1.1548

The normalized RMSEs in Table (4.5)are plotted in Figure (4.6).
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Figure 4.6: NRMSEs for A for BJT amplifier
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From these results, RMSE for Kriging metamodel for the gain A is higher than the RSM

metamodel by approximately 16%.

The previous activities are repeated for generating quadratic RSMs combined with MBD
and Kriging metamodels combined with LHC for the lower cutoff frequencyf; and upper

cutoff frequency fn. RMSEs and NRMSEs for metamodels for f;are given in Table (4.6).

Table 4.6: Errors values of RSM and Kriging metamodels for f;

RMSE for
RSM Kriging
metamodel
Trial number RMSE NRMSE
1 35364 1.2614
2 35613 1.2703
3 35604 1.2699
4 35201 1.2556
28036 5 35782 1.2763
6 35609 1.2701
7 35443 1.2642
8 35271 1.2581
9 35358 1.2612
10 110.611 1.1548

The normalized errors NRMSEs in Table (4.6) are plotted in Figure (4.7).
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Figure 4.7: NRMSEs of f; for BJT amplifier

36

www.manaraa.com



From these results, RMSE for the Kriging metamodel for the lower cutoff frequency f;

Is higher than the RSM metamodel by 26%.

The same procedure is repeated for the upper cutoff frequency fof the BJT amplifier.

RMSEs for the two metamodels are given in the Table (4.7).

Table 4.7: Errors values of RSM and Kriging metamodels for f3

RMSE for
RSM Kriging
metamodel
Trial number RMSE NRMSE
1 41305 1.2197
2 41689 1.2311
3 41395 1.2224
4 41783 1.2338
33864 5 41588 1.2281
6 41442 1.2238
7 42000 1.2403
8 41701 1.2314
9 41993 1.2400
10 41578 1.2278

The normalized errors NRMSEs in Table (4.7) are plotted in Figure (4.8).
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Figure 4.8: NRMSEs of f for BJT amplifier
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From these results, RMSE for the Kriging metamodel for the upper cutoff frequency f;

Is higher than the RSM metamodel by 23%.

4.3.3 MOSFET amplifier.

The performance parameters of the MOSFET amplifier shown in Figure (4.9) are

modeled using quadratic RSM and Kriging metamodels. For the midband gain A =

Vyue/Vin metamodels are derived as functions of the two design variables W1 and W2.

(the width of the two MOSFETS M1 and M2, respectively).

Figure 4.9: MOSFET amplifier.

The design variables ranges are given in Table (4.8).

Table 4.8: design variables ranges for MOSFET amplifier

Design variable | Min. value | Max. value Unit
W1 2 200 pm
W2 2 200 Hm
R 10 100 KQ
C 1 10 Pf

The circuit is modeled using a quadratic RSM in four dimensions. The second-order MBD

in Table (3.5) having 65 sample points is used to generate the metamodel for A. A LHC
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experimental design is then generated having the same number of sample points as the

MBD to fit the Kriging metamodel, the Kriging metamodel activity is repeated using 10

LHC sampling trials. RMSEs and NRMSEs for these metamodels are given in Table

(4.9).

Table 4.9: Errors values of RSM and Kriging metamodels for A

RMSE for
RSM Kriging
metamodel
Trial number RMSE NRMSE
1 0.528 1.5621
2 0.529 1.5651
3 0.531 1.5710
4 0.536 1.5858
0.338 5 0.530 1.5680
6 0.529 1.5651
7 0.531 1.5710
8 0.529 1.5651
9 0.528 1.5621
10 0.528 1.5621

The normalized errors NRMSEs in Table (4.9) are plotted in Figure (4.10).
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Figure 4.10: NRMSEs of A for MOSFET amplifier
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From these results, RMSE for the Kriging metamodel for the midband gain A is higher

than the RSM metamodel by 56%.

4.3.4 Operational amplifier

Performance parameters of the operational amplifier shown in Figure (4.11) are modeled

using quadratic RSM and Kriging metamodels. The performance parameters modeled are

the midband gain A=Vout/Vin the common- mode- rejection ratio (CMRR) and the power

dissipation (P). There are seven design variables W1, W3, W5, W6, W7 W8, and lpias for

the corresponding MOSFETSs in Figure (4.11).

Figure 4.11: operational amplifier

The design variables ranges are given in Table (4.10).

Table 4.10:design variable ranges for Op-amp

Design variable | Min. value | Max. value Unit
w1 10 100 pm
W3 10 100 pm
W5 50 100 pm
W6 200 300 pm
W7 100 200 Hm
W8 10 100 pm
Ibias- 5 25 |.1A
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Firstly, the circuit is modeled using quadratic RSMs in seven dimensions. The second-

order MBD in Table (3.5) having 552 sample points is used to generate RSM metamodel

for A, CMMR and P. A LHC experimental design is then generated having the same

number of sample points as the MBD to fit the Kriging metamodel.

The Kriging

metamodel activity is repeated using 10 LHC sampling trials. RMSEs and NRMSEs for

these metamodels for A are given in Table (4.11).

Table 4.11: Error values of RSM and Kriging metamodels for A

RMSE for
RSM Kriging
metamodel
Trial number RMSE NRMSE

1 764042 5.1551

2 764201 5.1561

3 763987 5.1547

4 764061 5.1552

148212 5 764158 5.1558

6 764003 5.1548

7 764261 5.1565

8 764297 5.1568

9 764351 5.1571

10 764146 5.1558

The normalized errors NRMSEs in Table (4.11) are plotted in Figure (4.12).

7 T T T T T T T T
6 = -—
R S SLEETTE] @ ———=== @ -———=- ®----=- === @ —===== ®---==- @ -®
RSM
[ J Kriging
w 4| = mean of NRMSE for 10 Krig trial
n
=
[
= 3L i
2+ .
1
0 r r r r r r r r
1 2 3 4 5 6 7 8 9 10

Trial number

Figure 4.12: NRMSEs of A for the operational amplifier
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From these results, RMSE for the Kriging metamodel for the midband gain A is

approximately equal to 5.15X RMSE for RSM.

RMSEs for metamodels for CMRR of the op-amp are given in Table (4.12).

The normalized errors NRMSEs in Table (4.12) are plotted in Figure (4.13).

NRMSE

Table 4.12: Error values of RSM and Kriging metamodels for CMRR

RMSE for
RSM Kriging
metamodel
Trial number RMSE NRMSE

1 1366395 4.4929

2 1366416 4.4929

3 1366175 4.4921

304125 4 1366311 4.4926

5 1366370 4.4928

6 1366420 4.4930

7 1366196 4.4922

8 1366234 4.4923

9 1366402 4.4929

10 1366323 4.4926

7 T T T T T T T T
6 RSM
®  Kriging
==-—=-mean of normalized RMSE for 10 Krig trial

5r m

Q=———— o —————— [ SELEEEL @===—== o—————— o —————— O [ SEEEEL o —————— -
4~ i
3 f~ —
2 i
1
0 r r r r r r r r

1 2 3 4 5 6 7 8 9 10

Figure 4.13: NRMSEs of CMRR for the operational amplifier

Trial Number
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From these results, RMSE for the Kriging metamodel for the common-mode-rejection-

ratio CMRR is approximately equal to 4.5X RMSE for RSM.

RMSEs of two metamodels for P of the op-amp are given in Table (4.13).

Table 4.13: RMSE values for RSM and Kriging metamodels for P

RMSE for
RSM Kriging
metamodel
Trial number RMSE NRMSE

1 389.023 3.0705

2 388.892 3.0694

3 389.261 3.0723

126.699 4 389.025 3.0705

5 388.997 3.0702

6 389.318 3.0728

7 389.230 3.0721

8 389.001 3.0703

9 389.225 3.0720

10 389.542 3.0745

The normalized RMSEs in Table (4.13) are plotted in Figure (4.14).

NRMSE

5 T T T T T T T T
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1
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Trial Number

Figure 4.14: NRMSEs for P for operational amplifier
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From these results, RMSE for the Kriging metamodel for the common-mode-rejection-

ratio CMRR is approximately equal to 3X RMSE for RSM.

4.4 Discussion

Based on the results shown in the previous section, it is clear that the maximum difference
value of NRMSE between RSM and Kriging metamodels is in the passive filter for the
midband ratio (, the error ratio is 1:11.5. On the other hand, the minimum difference
value of NRMSE between RSM and Kriging metamodels is in BJT amplifier for the gain

A, with an error ratio of 1:1.16.

So, it is clear that the MBD sampling combined with RSM is superior to LHC combined

with Kriging in all presented examples.
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CONCLUSIONS AND FUTURE WORK

Metamodeling is used as a way to reduce computational efforts in engineering system
design while still revealing accurate information about the behavior of the simulation

model of the engineering system.

In this thesis, two types of metamodeling techniques - Kriging metamodels generated
using LHC sampling, and response surface models (RSMs) based on minimum bias
designs (MBDs) are studied. Based on Google Scholar search results as discussed in
Chapter one, the former metamodeling technique (i.e. Kriging metamodel with LHC
designs) is more recent and gaining popularity in the literature, as compared to the
classical technique (i.e. RSM metamodels with MBDs) which — as it seems — is phasing

out.

Both metamodeling techniques are applied in this work to different analog integrated
circuits. The results show that using minimum bias designs MBDs to obtain RSM

metamodels improves accuracy in relation to Kriging metamodels with LHCs.

These results should direct the science community to use RSM with MBDs more

frequently in metamodeling and not to ignore it.

FUTUTE WORK

To improve the accuracy of the metamodel, piecewise RSM metamodels with MBDs
sampling method may be used, whereby the design variables space may be partitioned
based on validation results for a coarse global (covering the whole design variables space)

metamodel.
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