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ABSTRACT 

Al-Khateeb, Huda Turki.  On the Use of Experimental Design in Metamodling of Analog 

Integrated Circuits.  MSc. Thesis, Yarmouk University, 2017. (Supervisor: Dr. Sami Al-

Hamdan, Co-supervisor: Prof. Husam Hamad) 

A metamodel or surrogate model is a model of a model.  The process of generating such 

metamodels is called metamodeling.  A model is an abstraction of a phenomenon in the real 

world such as computer simulators.   Thus, a metamodel is a simplified abstraction of the 

original model that makes complex computer simulations of the original model simpler, yet 

faster while keeping acceptable accuracy.  Metamodels have become widely used across 

engineering and science disciplines. A successful metamodel requires careful choosing of 

appropriate experimental designs. An experimental design is a set of design variable values 

(inputs) that are used to generate a metamodel for a response as a function of the design 

variables.  Analog electronic circuit optimization is usually a computationally intensive 

problem.  The use of metamodeling in this class of problems to replace simulators is a promising 

technique for time reduction of circuit optimization.  One of the criteria that the metamodeling 

techniques need to be tested on is accuracy.  Accuracy is largely dependent on the type of the 

metamodel and the computer experimental design used to generate the metamodel.  In this 

research, two of the most popular metamodeling types are investigated: the classical response 

surface models (RSMs), and the more recent Kriging metamodels, with two main computer 

experimental design methods: Latin hypercube (LHC) sampling and minimum bias designs 

(MBDs).  Each method is applied in this work to model circuit performance parameters of 

analog electronic circuits, ranging from simple electronic filters to analog integrated circuits 

such as operational amplifiers.  The results of this investigation show that the use of RSMs 

metamodels combined with MBDs sampling is superior to the more popular Kriging technique 

combined with LHC sampling.  This work should direct the analog integrated circuit design 

research community to the most suitable methodology in both metamodel types and 

experimental designs to use. 

Keywords: Metamodel, Kriging, Response Surface Model (RSM), Minimum bias design 

(MBD), Latin hypercube (LHC), Root mean square error (RMSE). 
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CHABTER I: INTRODUCTION 

1.1 Introduction to metamodeling and experimental designs 

Traditional simulation methods used in computer-aided design (CAD) of analog 

integrated circuits (ICs) is time consuming, especially if the number of active components 

is large [1].  The number of transistors per unit area is on the rise; hence, the design and 

manufacture of these ICs take long time.  Computer simulations are usually involved, and 

the complexity of the circuit determines the time needed to design the circuit.  It may take 

from a few seconds or minuets to several hours or days [2].  Metamodels (surrogate 

models) of circuit performance parameters are widely used instead of simulators to reduce 

the time of circuit design optimization, and hence allow faster production of analog ICs. 

A metamodel is an approximation of a physical/electrical model which approximates as 

closely as possible the original model; e.g., to characterize the performance parameters 

of a circuit [1].  In other words, it is a mathematical model that uses samples to generate 

a function that estimates the relation between the design variables and the performance 

parameters of the circuit under investigation [2].  These approximation models are used 

in the design process to reduce the design cycle time and cost by predicting the output of 

an expensive computer code at many points in the design variables space [3]. 

Different types of metamodels are used in the literature to model analog integrated circuits 

performance parameters such as Kriging [1, 4, and 5]; Response Surface Models (RSMs) 

[6], Radial Bases Functions (RBF) [4], rational functions [4] and support vector machines 

(SVM) [2]. 
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Metamodels have to be calibrated to achieve operable accuracy levels and to deal with 

specific user requirements.  Computer experimental designs are used to determine 

combinations of design variables to fit these metamodels.  Different experimental designs 

to build metamodels are used in the literature including Latin hypercube (LHC) sampling 

[1, 4], factorial designs [5], Box-Behnken designs [5] and minimum bias designs (MBDs) 

[6]. 

The statistics given in the next section indicate more and more researches combine 

Kriging metamodels with LHC sampling to build metamodels for circuit performance 

parameters. It is widely believed that this combination requires less sample points and 

provides more accuracy than other metamodels. 

In this work, we investigate if the increasing popularity for using Kriging metamodels in 

analog ICs design is justified in terms of accuracy, by comparison to the classical RSM 

metamodels. However, unlike most recent work that derives RSM metamodels using 

LHCs, MBs are used in this work to build RSMs.  

1.2 Research Statistics  

Figure (1.1) summarizes Google Scholar search results showing the number of research 

papers that use Kriging and RSM metamodels for the period (2000-2015), inclusively. 

The following statistics are deduced from the results in Figure (1.1): 

 For Kriging metamodels, the number of articles that mention Kriging metamodels 

has increased from 321 articles during (2000-2007) to 1340 articles for (2008-

2015), i.e., the increase is by  3.2 folds. 
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 For RSM metamodels, the number of articles that referred to RSM metamodels 

has increased from 196 articles during (2000-2007) to 425 articles for (2008-

2105) i.e., the increase is by 0.17 folds. 

 In (2000-2007), 62% of articles on electronic circuits relate to Kriging 

metamodels by comparison to RSM metamodels, while this has increased to 76% 

for the period (2008-2015). 

The above results are summarized in Figure (1.2).  Based on these statistics, Kriging 

metamodels are more popular than RSM in articles concerning metamodeling in 

electronic circuits. Moreover, this popularity is on the rise. 

 

 

Figure 1.1: Google search results for the number of articles on electronic circuits using 

Kriging and RSM metamodels for the period 2000-2015. 
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Figure 1.2: percentage of articles on electronic circuits using Kriging and RSM 

metamodels in two different time periods. 

 

A Similar Google Scholar search is conducted for LHC and MBD experimental design 

methods, with the results summarized in Figure (1.3) for the period (2007-2015), 

inclusively. 

 

Figure 1.3: Google search results for the number of articles on electronic circuits using 

LHC and MBD experimental designs for the period 2000-2015. 
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The following statistics based on the results in Figure (1.3) indicate that: 

 For the LHC sampling method, the number of articles that mention LHC 

experimental design has increased from 266  articles during (2000-2007) to 1240 

articles for (2008-2015), i.e., the increase is by  3.6 folds. 

 For the MBD sampling method, the number of articles that mention MBD 

experimental design has increased from 3 articles during (2000-2007) to  4 articles 

for (2008-2015), i.e., the increase is by  0.33 folds. 

 In (2000-2007), 98.8% of articles on electronic circuits refer to LHC sampling 

method by comparison to MBD sampling method, while this has increased 

to  99.7% for the period (2008-2015). 

In summary, it is clear from the research statistics presented in this section that Kriging 

metamodeling and LHC sampling are much more widely used in the literature on 

electronic circuits by comparison to the classical RSMs and MBDs.  More discussion 

about this issue is presented in Chapter 3. 

1.3 Research contribution 

In the design of analog integrated circuits, analysis to determine the required circuit 

performance parameters is executed using time-consuming simulations.  A lot of time is 

consumed to determine and satisfy circuit performance parameters at different conditions. 

This analysis should be performed rapidly because there are some strict time-to-market 

restrictions in the industrial sector [1, 2]. 

For these reasons, the use of metamodels (surrogate models) has become an effective 

technique for estimating the behavior of a circuit with high accuracy.  Using suitable 



www.manaraa.com

 
 

 
 
6 
 

metamodels instead of the traditional simulation tools gives acceptable results in much 

shorter periods [1, 2]. 

The objective of this work is to shed light on the proper directions in metamodeling 

techniques and experimental design methods for analog integrated circuits and their 

application in the design of such circuits.  In particular, we investigate if the increasing 

popularity for using Kriging metamodels with LHC sampling in electronic circuit design 

is justified in terms of accuracy by comparison to RSM metamodels with MBD sampling. 

1.4 Structure of the thesis 

This thesis is divided into six chapters. An outline of the remaining chapters is as follows: 

 Chapter 2 summarizes results in recent published research in the area of 

metamodeling, especially in analog integrated circuit design. 

 Experimental design methodologies are presented in Chapter 3, which includes 

MATLAB codes to generate LHC and MBD designs, and discusses issues related 

to metamodel types, with emphasis on analytical formulation of Kriging and RSM 

metamodels. 

 Analog circuits ranging from simple filters to the most commonly used analog IC 

(the operational amplifier) are presented in Chapter4, comparing Kriging with 

LHC experimental design and RSM with MBDs. 

 Chapter 5 concludes the thesis, giving directions for future work.  
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CHAPTER II: LITERATURE REVIEW 

Metamodels are not new; they have been in use for more than sixty years [7, 8].  Most 

commonly in recent literature, metamodels are used to replace simulators in the design of 

engineering systems, as a way to minimize the time used for estimation of system 

performance parameters. 

Traditionally, the default metamodeling technique is polynomial regression metamodels 

[7, 8]; nowadays more and more different techniques of metamodeling are used to reduce 

computation time for engineering system design. 

Different types of metamodels are used in analog circuit design.  These types include 

Kriging, Response Surface Models (RSMs), Radial Bases Functions, Rational Functions, 

Support Vector Machines (SVM), etc.  In addition, different experimental designs to build 

metamodels of integrated circuit performance parameters are used; these include simple 

random sampling, classical sampling, LHCs, MBDs, etc. 

H. You [1] explored the attributes of combining classical Kriging metamodels with LHC 

sampling method, and RSM metamodels with classical Design of Experiment (DOE) 

sampling methods.  In this reference, two circuit performance parameters of an amplifier 

are characterized: power dissipation (Pc) and bandwidth (BW). The result shows that the 

Kriging metamodel with LHC sampling method needs less sample points and provides 

higher accuracy than quadratic RSM metamodels  with classical Design of Experiment ( 

DOE) sampling methods. 

A. Ciccazzo, et al in [2] compared between two metamodels, support vector machines 

(SVM) and RSMs.  These metamodels are compared on WiCkeD tool, and the conclusion 

was that the two metamodels give quite similar results. 
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H. Zhong-Hue, and K. Zhang, in [3] focuses on exploring the differences between the 

two-metamodeling techniques: Kriging and polynomial regression.   The goal is to 

discover which technique is most suitable.  Regarding the use of experimental design, 

LHC sampling and random design sampling are used to test the performance of each 

metamodeling technique with four different simulation models. The overall results show 

that Kriging metamodeling has a better performance of speed and accuracy on average 

than regression metamodeling.   

 

In [4], Kriging, radial bases functions (RBF), and rational functions metamodels 

combined with LHC were applied to model performance parameters of a transimpedance 

amplifier circuit. The authors compared results of these three metamodeling types to find 

an optimal solution in a short design time. Three circuit performance parameters are 

characterized for the transimpedance amplifier: bandwidth (BW), gain (Zg), and power 

consumption (pwr).  Efficiency for these metamodels are compared, the results show that 

the three metamodels are very fast, they take a few seconds to optimize the circuit, but 

the rational functions  metamodels with LHC was the fastest one. 

H. Hamad, and A. Bani Irshaid in [5] constructs a piecewise –Kriging metamodel to 

reduce the complexity of variation of the design variables space and thus enhancing 

accuracy of the metamodels, by dividing design variables space into several pieces.  Two 

metamodeling techniques Global-Kriging and piecewise-Kriging metamodels combined 

with LHC methods are compared, showing that more accurate metamodels can be 

achieved using piecewise- Kriging metamodels. 
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H. Hamad, et al in [6] presented techniques for constructing minimum bias response 

surface metamodels for deterministic simulation models using minimum bias designs 

(MBDs). This technique can be used to build MBDs for higher-dimension spaces and 

higher-order MBDs.  Analytic examples are used in this work to demonstrate that the 

MBDs sampling combined with RSMs metamodels are potentially superior to the more 

popular LHCs sampling combined with RSM metamodels. 

 

A new methodology is presented in [9] that combines the Kriging technique with Ant 

Colony Optimization (ACO) algorithm that presents fast optimization of the circuit. This 

methodology is examined using an amplifier integrated circuit. The result is that the 

Kriging based metamodel is accurate, and (ACO) algorithm improves sense amplifier 

precharge time to 3.7 minutes compared with 72 hours. 

 

D. Gorissen, et al in [10] made a comparison of accuracy and scalability of different 

metamodels including artificial neural network model (ANN), Kriging, SVM and rational 

function models, based on samples for a low noise amplifier LNA of RF circuit block.  It 

was clear that the ANN models gave excellent results with SVM functions compared to 

other metamodels.  

 

An adaptive RSM-based optimization method for analog circuit sizing is presented in [11] 

to reduce the computational cost of designing applications requiring computationally 

expensive evaluations.  Through application to different test functions and case studies 

including a two-stage operational amplifier, the method demonstrated effectiveness 

compared to annealing and differential evolution technique. The result was clear that the 

ANN models perform best in Kriging   
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In [16], as a comparative case study two circuits have been designed :  a 180nm LC-VCO 

and a 45 nm ring oscillator (RO), to investigate three algorithms to compare the speed of 

optimization on polynomial metamodels. The results show that metamodel-based 

optimization achieved speed up as high as 21,600× for the LC-VCO circuit and 

11,750× for the RO compared to the actual circuit netlist-based (SPICE) optimization. 

 

O.  Garitselov, et al in [30] presented a two-tier approach to reduce the design cycle time 

by combining accurate metamodeling and intelligent optimization. This paper introduced 

an intelligent Bee Colony Optimization (BCO) algorithm to speed up the design-space 

exploration for AMS circuits.  A 180 nm LC-VCO PLL frequency generation circuit is 

used as case study, the result of the design flow was 90% power savings and average of 

52% jitter minimization, which have been achieved with a minimal time of 100 

simulations to generate polynomial metamodels. 
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CHAPTER III: METAMODELING AND  

EXPERIMNTAL DESIGN 

As has been emphasized in this thesis so far, a metamodel is an interpolation function that 

represents the relation between design variables (inputs) and system performance 

parameters (outputs) of a simulation model to estimate the behavior of a system as a black 

box model. These metamodels are used instead of the more time consuming simulators 

to reduce the time of system design optimization [12]. The goal of this chapter is to 

present the different metamodel types and methodologies, including experimental design 

techniques.  The chapter starts by outlining the metamodeling steps. 

3.1 Metamodeling steps  

Metamodeling consists of four steps: sampling, fitting, reproducing, and validation; see 

Figure (3.1). 

 

Figure 3.1: Metamodeling steps. 

 

 

First
• Sampling

Second
• Fitting

Third
• Reproducing

Fourth
• Validation
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 Sampling: 

Sampling is the way of selecting a pre-determined small number of points in the 

design variables space to be used for generating the interpolation function 

(metamodel).  Choosing the appropriate DOE (i.e. the set of samples) is very 

important for accurate metamodel results. 

 Fitting:  

In this phase, a metamodel is fitted to the set of sample points chosen in the 

previous step.  The parameters of the chosen metamodel type are adjusted to 

minimize error (usually least-square-error). 

 Reproducing: 

In this phase, the parameters of the metamodel computed in the previous step are 

used to give estimation of the response at a wider set of points in the design 

variables space. 

 Validation: 

In this phase, the accuracy of the chosen metamodel is tested against the original 

model used usually by a simulator (e.g. SPICE).  Accuracy is one of the criteria 

that metamodeling techniques are tested on. It is a predictive quality of a 

metamodel, i.e. goodness-of-fit between the metamodel and the response. In 

statistics, various validation measures exist, e.g., coefficient-of-determination 𝑅2, 

mean absolute error (MAE), and root mean square error (RMSE) [8]. RMSE - the 

most popular validation statistic - is used in this research for metamodel 

validation. 

 

RMSE is a measure of the difference between the response predicted by the metamodel 

and that used by the actual model in simulators [13].   RMSE is defined as follows:  
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𝑅𝑀𝑆𝐸 = √
∑  (𝑌𝑖−Ŷ𝑖)2𝑛

𝑖=1
𝑛

…………………………………………………(1) 

 

Where 𝑌𝑖 is the actual response at the 𝑖𝑡ℎ sample point,  Ŷ𝑖 is the predicted response by 

the metamodel at the same point [12]. 

To reflect a percentage-wise error, normalization may be used to determine normalized 

error NRMSE, e.g. 

       𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

|𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛|
      ….............................................................................(2) 

 

Ymax, and Ymin   are the maximum and minimum values of the response respectively. 

Experimental design sampling methods and metamodel types are briefly discussed in the 

next sections.  For reasons presented in Chapter I, emphasis will be placed on two 

metamodel types-Kriging and RSM metamodels, and on two experimental design 

methods-LHC sampling and MBDs sampling. 

3.2 Experimental design methods 

When selecting a metamodel technique, probably the most important issue that has to be 

taken into account is the experimental design (the sampling method) of the design 

variables space.  An experimental design is a software structure that assist users with 

designing and exploring experiments and their results, and it involves selecting the right 

variations in input design variables to build a model of the performance (response) as a 

function of these design variables [8]. 

whenIn the designing process, exploring all area of the of the design variables space requires 

high cost of performing many experiments and it takes long time.  Instead, an 
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experimental design is used to determine the location of a set of sample points in the 

design variables space that covers the information gained from the response that is 

necessary to fit the metamodel [15]. 

Currently, there are two different types of experimental designs:  ‘classic’ experimental 

designs, and ‘modern’ experimental designs. Classic experimental designs such as 

factorial designs, Box-Behnken designs, and composite central designs [5] are 

traditionally used in response surface models, while modern experimental designs such 

as LHC [16, 17] and Orthogonal Array Design (OAD) [5] are mostly used with Kriging 

metamodels. In this research, two experimental designs are investigated: LHC and MBD 

sampling. 

3.2.1 Latin hypercube sampling method  

Latin hypercube (LHC) sampling is a type of stratified sampling (sampling from a 

population).  It works by controlling the way that random samples are generated for a 

probability distribution [16, 17].  An LHC sample is generated by dividing the design 

variables space into subintervals and choosing randomly a sample in these subintervals, 

and ensuring that every design variable is used exactly once, where  each sample covers 

one of possible probabilities of all design variables, for example in Figure (3.2) one square 

in each row and column contains one sample chosen randomly in the space covered by 

that square [3]. 
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Figure 3.2: Two-dimensional LHC [2]. 

There are several combinations to choose the sampling points while preserving the 

conditions imposed on LHC method.  The maximum number of combinations for a Latin 

hypercube of M divisions and N design variables (i.e., dimensions) can be computed with 

the following formula [16]: 

(∏(𝑀 − 𝑛)

𝑀−1

𝑛=0

)

𝑁−1

= (𝑀!)𝑁−1 … … … … … … … … … … … … … … … … . . (3) 

For example, a Latin Hypercube with 𝑀 = 4  divisions and 𝑁 = 2 variables has 24 

possible combinations. 

In this work, LHC sampling is generated using command “lhsdesign” in MATLAB 

software.  This command requires a prior knowledge about the number of sample points 

to be generated and the number of design variables. It generates sample points with 

coordinates of values between 0 and 1; this is called the “coded” variable.   The coded 

variables are then converted to their true “natural” values of the design variables.  For 

example:   a resistor in an electronic circuit that could have values from 200  to 1000  

is mapped to values from 0 to 1 in LHC such that 0 in LHC will be the corresponding 
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value for 200  and 1 will map to 1000.   Generally, the natural values for a variable x are 

computed as follows:   

xn  =  xc (xnmax   - xnmin) + xcmin ………………………………………………….(4) 

Where xn and xc are the natural and coded values of the variable x respectively. 

3.2.2 Minimum bias designs  

When finding an interpolation function using a chosen set of points from the design 

variable space, the resulting function will have errors due to two major factors:  variance 

error which is primarily caused by sampling, and bias error which is caused by the choice 

of the interpolating function (e.g. choosing a first order polynomial for a metamodel while 

the actual model is of second order nature) [6].  MBD is concerned with the selection of 

sample points from the design variable space such that the error caused by the wrong 

choice of the metamodel function is minimized. 

 

Box and Draper introduced the minimum bias (all bias) criterion to generate MBDs [19], 

with more recent treatment by [6] and [29].  Here statistical design of experiments is used 

to select optimal points that minimize bias error in the metamodel approximation.  Unlike 

classical designs which minimize variance error assuming no bias in the metamodel (i.e., 

the metamodel perfectly matches the complexity of the underlying response), MBDs 

automatically minimize the bias error and the mean square error. 

The following MBD derivation outline parallels that in [6]: 

Let Y(X) be a function in k variables x1, x2 … x k and  �̂�(𝐵1, 𝑋) is an approximation over 

the region R in the design variables space. Assuming �̂�(𝐵1, 𝑋) is a polynomial of 

degree 𝑑1, where  
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�̂�(𝐵1, 𝑋1) = 𝐵1𝑋1𝑇………………………………………..………….…. (5) 

X1 is the vector of m elements of powers and products of x1, x2,…xk of order 𝑑1 or less, 

and B1 is the corresponding m1 coefficients, where  

 

𝑚1 =
(𝑑1 + 𝑘)!

𝑑1! 𝑘!
… … … … … … … … … … … … … … … … … . . … … . . … … … . (6) 

Suppose the true function Y(X) is represented be a Weierstrass polynomial �̆�(𝐵, 𝑋) of 

degree 𝑑2 > 𝑑1 , where  

 

�̆�(𝑩, 𝑿) = 𝑩𝟏𝑿𝟏𝑻 + 𝑩𝟐𝑿𝟐𝑻  … … … … … … … … … … … … . . … … … . … … … (7) 

 

X1 is as before, B1 is the corresponding vector of coefficients, X2 has 𝑚2 elements of 

powers and products of x1, x2, …, xk of order 𝑑2 or less but greater than 𝑑1, and B2 is the 

corresponding vector of  𝑚2 coefficients, where  

𝑚2 = (
(𝑑2 + 𝑘)!

𝑑2! 𝑘!
) − 𝑚1 … … … … … . . … … … … … … … . . … . . … . . … . . … … (8) 

[19] uses equation (5) to minimize the average integrated bias–AIB  

 

𝐴𝐼𝐵 =
1

𝑉
∫[�̆�(𝑩, 𝑿) − �̂�(𝑩𝟏, 𝑿𝟏)]

2
𝑑𝑥

1

𝑅

… … … … … … … . … … … … . . … … . (9) 

Where  

𝑉 = ∫ 𝑑𝑥
1

𝑅

… … … … … … … … … … … … … … … … … … … … … … … … … … … (10) 

Then a sufficient condition to minimize 𝐴𝐼𝐵 is  
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M11= µ11    ,   M12 = µ12     …..……………………………………………………..………………… (11) 

µ11 and µ12 are known as the moments of the region R.  The m1 x m1 elements of µ11and 

m1 x m2 elements of µ12 are of the form 

1

𝑉
∫ 𝑥1

𝑎1

1

𝑅

𝑥2
𝑎2 … 𝑥𝑘

𝑎𝑘  𝑑𝑥  … … … … … … … … … … … … … … … … . . … … . … … … (12) 

   These moments are said to be of order 𝑎; 𝑎 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘 and 1 ≤𝑎≤ (d1+ d2). 

Similarly, for the N experimental design points, the (m1 x m1) moments M11 and 

(m1xm2) moments M12 of order 𝑎; 𝑎 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘 have elements of the form: 

1

𝑁
∑ 𝑥1𝑛

𝑎1

𝑁

𝑛=1

𝑥2𝑛
𝑎2 … 𝑥𝑘𝑛

𝑎𝑘 … … … … … … … … … … … … … … … … … … … … … . . (13) 

It can be shown that the number of moments nm of order 𝑎(1 ≤ 𝑎 ≤ (d1+ d2)) which must 

be equalized in accordance with equation (11) to form a MBD in an arbitrarily shaped k-

dimensional region R is 

     𝑛𝑚 = ∑
(𝑎 + (𝑘 − 1))!

𝑎! (𝑘 − 1)!

𝑑1+𝑑2

𝑎=1

… … … … … . … … … … … … … … … … … . . … … … (14) . 

Table (3.1) shows nm values for second to fourth-order MBDs for 2≤ k ≤5. 

Table3.1: Number of moments in equation (14) 

MBD 

k 2nd order 3rd order 4th order 

2 20 35 54 

3 55 119 219 

4 125 329 714 

5 251 791 2001 
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Examining the table above reveals that the number 𝑛𝑚of nonlinear equations that must 

be satisfied can be prohibitive for large dimensions and high-order MBDs. Fortunately, 

the number of such equations can be reduced dramatically by: 

 Using symmetrical regions R. For example, for a k-dimensional cuboidal region 

with    -1≤ x1, x2, … xk ≤ +1,  (here, the range -1 to +1 is the coded values for all 

variables of the system space) the integration of eq. 12 above reduces to zero for all 

odd powers: 

1

𝑉
∫ 𝑥1

𝑎1

1

𝑅

𝑥2
𝑎2 … 𝑥𝑘

𝑎𝑘  𝑑𝑥 =  {

          0                                                𝑖𝑓𝑎𝑛𝑦 𝑎𝑖 𝑖𝑠 𝑜𝑑𝑑    
1

(𝑎1 + 1)(𝑎2 + 1) … (𝑎𝑘 + 1)
    𝑎𝑙𝑙 𝑎𝑖 𝑒𝑣𝑒𝑛 

 

To illustrate, suppose it is required to generate a second-order MBD in a two-dimensional 

region R. From Table 1, the number of moments that must be equalized in this case is 20.  

If no symmetry is used, then the coordinates (x1, x2) = (ai, bi) for 1 ≤ i ≤ 10  are 

determined by solving the following 20 × 20 system of the nonlinear equations: 

 First-order moments: 

∑ 𝑎𝑖 = 𝑁 ∫ 𝑥1𝑑𝑥

10

𝑖=1

 

∑ 𝑏𝑖 = 𝑁 ∫ 𝑥2𝑑𝑥

10

𝑖=1

 

 

………………………….………(15) 

 

 Second-order moments: 

∑ 𝑎𝑖
2 = 𝑁 ∫ 𝑥1

2𝑑𝑥

10

𝑖=1

 

 

 

 

 

 



www.manaraa.com

 
 

 
 
21 
 

∑ 𝑎𝑖𝑏𝑖 = 𝑁 ∫ 𝑥1𝑥2𝑑𝑥

10

𝑖=1

 

 

∑ 𝑏𝑖
2 = 𝑁 ∫ 𝑥2

2𝑑𝑥

10

𝑖=1

 

 

…………………………………  (16) 

 

 Third-order moments: 

. 

. 

. 

 Fourth-order moments: 

 

. 

. 

. 

 Fifth-order moments: 

∑ 𝑎𝑖
5 =  𝑁 ∫ 𝑥1

5𝑑𝑥

10

𝑖=1

 

 

∑ 𝑎𝑖 𝑏𝑖
4 = 𝑁 ∫ 𝑥1𝑥2

4𝑑𝑥

10

 𝑖=1

 

. 

. 

. 

∑ 𝑏𝑖
5 = 𝑁 ∫ 𝑥2

5𝑑𝑥

10

𝑖=1

 

 

 

 

 

 

 

 …………………………...……. (17) 

The complexity of the above system reduces to the solution of the following 3 × 3 

nonlinear system if the symmetrical point sets are used in the ‘cuboidal’ space  −1 ≤ 𝑥1 

,𝑥2  ≤ +1:  
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4𝑎2 + 4𝑏2 =
𝑛0  + 8

3
 

8𝑎2𝑏2 =
𝑛0  + 8

9
 

4𝑎4 + 4𝑏4 =
𝑛0  + 8

5
 

 

 

 

……………………….……………(18) 

Where n0 is the number of center points (x1, x2) = (0, 0). 

Table 3.2: Notation used. 

Notation Meaning #points Notes 

C(0𝑘) A design point at the centre 1 𝑥1 = ⋯ 𝑥𝑘 = 0 

F(𝑢𝑘) Factorial design 2𝑘 
See Table 3.3 

for k = 3 

S(𝑢𝑘, 𝑣𝑘−𝑎) 

All k permutations of factorial 

designs with 𝑎 variables at u 

and (k–𝑎) variables at v 

 

𝑘2𝑘 

See Table 3.4 

for k = 3 

 

 

Table 3.3: F(𝑢𝑘) factorial design for k = 3 

x1= ± u x2= ± u x3= ± u 

-u -u -u 

-u -u +u 

-u +u -u 

-u +u +u 

+u -u -u 

+u -u +u 

+u +u -u 

+u +u +u 

 

The point sets in Draper (1960) which are used to form rotatable designs in cuboidal 

regions can be useful for MBDs. Based on these point sets, second-, third-, and fourth-
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order MBDs in our work are constructed using combinations of the following sets: C(0𝑘), 

F(𝑢𝑘), and S(𝑢𝑘 , 𝑣𝑘−𝑎). Explanation for this notation is provided in Table (3.4) 

In this research second- order minimum bias designs (MBDs) are used to obtain RSM 

metamodels (see table 3.5) 

Table 3.4: S(𝑢𝑘, 𝑣𝑘−𝑎) design for k= 3 with 𝑎 = 1 

x1= ± u 

x2= ± v 

x3= ± v 

x1= ± v 

x2= ± u 

x3= ± v 

x1= ± v 

x2= ± v 

x3= ± u 

x1               x2                  x3 x1               x2                  x3 x1                   x2                       x3 

-u -v -v -v -u -v -v -v -u 

-u -v +v -v -u +v -v -v +u 

-u +v -v -v +u -v -v +v -u 

-u +v +v -v +u +v -v +v +u 

+u -v -v +v -u -v +v -v -u 

+u -v +v +v -u +v +v -v +u 

+u +v -v +v +u -v +v +v -u 

+u +v +v +v +u +v +v +v +u 

 

Table 3.5: Second-order MBDs 

S(𝑢𝑘, 𝑣𝑘−𝑎) 

k u v 𝑎 

2 0.418 0.759 1 

3 0.816 0.434 1 

4 0.868 0.448 1 

5 0.913 0.460 1 

 

More information and details can be found in [6]. Illustrative examples are given in the 

next subsection. 
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3.2.3 Illustrative example 

In this section, a second – order MBD and LHC sample with the same number of design 

points as the MBD are generated for a two-dimensional space to clarify experimental 

design generation techniques. 

Figure (3.3) shows a second -order MBD for two dimensions X1 and X2 generated using 

𝑆(𝑢𝑎, 𝑣𝑘−𝑎)  as in Table (3.5). 

 

Figure 3.3: second – order MBD 
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Figure 3.4: second – order LHC (trial 1) 

 

 

 

Figure 3.5: second – order LHC (trial 2) 
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The same number of sample points (i.e., Nine; see Figure 3.3) as the MBD is generated 

for the LHC sample. Three sampling trials are shown in Figure (3.4), Figure (3.5), and 

figure (3.6).      

 

Figure 3.6: second – order LHC (trial 3) 

 

   

3.3 Metamodeling types 

As mentioned before, a number of metamodel types are available in the literature; e.g., 

Kriging [1, 9], Radial Basis Functions (RBF) [1], Response Surface Models (RSM)[4, 

17,18], Multivariate Adaptive Regression Splines (MARS)[6] and Artificial Neural 

Networks (ANN)[6].  In this thesis, we limit our discussion to the most widely used 

metamodels: Kriging metamodels and RSM. 

3.3.1 Kriging metamodels 

Kriging metamodels were originally developed in geostatistics by the South African 

engineer Danie Krige [14].  Kriging is an interpolation algorithm for spatial data; 
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interpolation is a process of finding a value at an unmeasured location from observed data 

at surrounding locations [1, 8].  A Kriging model estimates the value of the function at a 

given point by calculating a weighted average of the known values of the function in the 

surrounding of the point [8]. 

 

The Kriging metamodel Ŷ(x) of a response Y(x)is expressed as: 

Ŷ(𝒙) = 𝒀(𝒙) + 𝒛(𝒙) … … … … … … … … … … … . . … … … … … … … … … … . (19) 

 

Where Y(x) is a polynomial of the design variables x, that interpolates the design points. 

𝒛(𝒙) is a Gaussian function that represents the   stochastic process (realization of a random 

process) with zero mean and variance σ2 [19]. The goal is to determine weights i that 

minimize the variance. 

 

𝐶𝑂𝑉(𝑧) =  𝜎2𝑅(𝑥𝑖, 𝑥𝑗) … … … … … … … … … … … … . … … … … … . … … … … (20) 

Where  R (xi, xj) is the correlation matrix.  More information and details about derivations 

of Kriging metamodel can be found in [17]. 

In this work, mGstat Toolbox [21] is used to construct the Kriging metamodels. To use 

the toolbox in MATLAB we simply added the path where mGstat is installed to the 

MATALB path.  The following example is given to facilitate understanding concepts 

related to Kriging metamodeling.  The response 𝑦(𝑥) here is a fifth–order polynomial, 

over 𝑥 𝝐 [-3, 4], where: 

y(x) = x5 – 15x3 + 20x 



www.manaraa.com

 
 

 
 
27 
 

Five points are selected in the interval [-3, 4] using LHC experimental design (LHC 

sampling is discussed in section (3.2.1) to estimate the parameters of the Kriging 

metamodel �̂�(𝒙).   Figure (3.7) below shows the Kriging metamodel ŷ(𝑥) superimposed 

on the response y(x)  

 

Figure 3.7: response 𝑦(𝑥) and Kriging metamodel ŷ(𝑥) using 5 samples  

 

3.3.2 Response Surface Models (RSM) 

The response surface model (RSM) is a polynomial of a response as a function of the 

various inputs (design variables).  It is a parametric regression model, which means that 

it uses experimental design points to estimate unknown parameters of the polynomial [17, 

18]. 

As it is well known, the behavior of the response surface model depends on the order of 

polynomial; so the chosen order of the RSM polynomial is important for the accuracy of 

the metamodel [8]. 
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A second order RSM Ŷ(𝑥) in 𝑘–design variables is expressed as: 

Ŷ(𝑥) =  𝛽0  + ∑ 𝛽𝑖
𝑘
𝑖=1 𝑥𝑖 + ∑ ∑ 𝛽𝑖 𝑗

𝑘
𝑖≥𝑗

𝑘
𝑖=1 𝑥𝑖 𝑥𝑗………………(21) 

 

 

𝛽0  ,  𝛽𝑖  and βij, are the coefficients (parameters) of the RSM, and xi refers to one of the 

k design variables.  
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CHAPTER IV: METAMODELING OF ANALOG ICs: 

METHODOLOGY, RESULTS, AND DISCUSSION 

 

In this chapter, Kriging metamodel with Latin hypercube (LHC) samples, and RSMs with 

MBDs are applied to different analog electronic circuit performance parameters.  These 

circuits range from a simple filter to an operational amplifier - the most widely used 

analog IC. 

4.1 Introduction 

As mentioned previously, this research focuses on investigating the differences between 

the two metamodeling techniques of Kriging with LHC sampling and RSM with MBDs.  

The objective is to find which technique is most accurate for analog integrated circuit 

design.  The statistic used in this work to measure accuracy of metamodeling techniques 

is the root-mean-square-error (RMSE), which is the most widely used statistic in 

metamodel validation. 

This chapter is organized as follows. Section (4.2) outlines the methodology in this work. 

In Section (4.3), this research methodology is used to generate performance parameters 

of a range of analog circuits.  Finally, discussion of the metamodeling results is presented 

in Section (4.4).  

4.2 Research methodology 

Figure (4.1) shows the steps that are used in this work to generate and compare Kriging 

and RSM metamodels, using LHC and MBD sampling methods respectively. 
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Figure 4.1: Research methodology used for performance parameter metamodeling of 

electronic circuits. 

 

 

The metamodeling procedure starts by selecting the design variables as well as their 

ranges; these are usually provided by the user. In the second phase, two types of computer 

experimental designs, LHC sampling and MBDs, that were described earlier, 

respectively, are used to generate the samples points that are used to fit the two types of 

metamodels:  Kriging and RSM.  Finally, the metamodel validation phase is conducted 

by calculating (RMSE) in order to compare the accuracy of the results of the two-

metamodeling activities. 

4.3 Experimental results  

The research methodology outlined in the previous section is applied to compare RSM 

and Kriging metamodels for performance parameters of various electronic circuits, 

including a simple passive filter, a BJT amplifier, a MOSFET amplifier, and an 

operational amplifier IC. 
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4.3.1 Passive filter  

The performance parameters of the passive low-pass filter shown in Figure (4.2) are 

modeled using the methodology outlined in Section (4.2). Metamodels for the midband 

ratio 𝜁 = 𝑉𝑜𝑢𝑡 𝑉𝑖𝑛⁄  and the bandwidth (BW) are derived as a function of the five design 

variables R1, R2, R3, R4 and C.  

 

Figure 4.2:Passive filter. 

The design variables ranges are given in Table 4.1 

Tabel 4.1: design variable ranges for passive filter 

Design variable Min. value Max. value Unit 

R1 20 200 KΩ 

R2 10 100 KΩ 

R3 10 100 KΩ 

R4 10 100 KΩ 

C 1 10 µf 

 

Firstly, the circuit is modeled using a quadratic RSM in five dimensions. The second-

order MBD in Table (3.5) having 161 sample points is used to determine RSM 

metamodels for responses  𝜁 and BW.  A LHC experimental design is then generated 

having the same number of sample points as the MBD to fit the Kriging metamodel, LHC 
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sampling is repeated to generate 10 different sampling trials with their corresponding 

Kriging metamodels.  RMSEs for these metamodels are given in Table (4.2), along with 

NRMSEs, (the errors normalized to the RSME of RSM metamodel). 

Table 4.2: Errors values of RSM and Kriging metamodels of ζ  

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

8824.11 0.160 1  

 

 

 

0.014 

8823.18 0.159 2 

8824.11 0.160 3 

882.111 0.161 4 

8823.18 0.159 5 

8823.18 0.159 6 

8824.11 0.160 7 

882.111 0.161 8 

8824.11 0.160 9 

8823.18 0.159 10 

 

The normalized errors NRMSEs in Table (4.2) are plotted in Figure (4.3). 

 
 

Figure 4.3: NRMSE of 𝜁 for passive filter. 
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The average RMSE for the response ζ of the filter circuit in Figure (4.3) for the 10 LHC 

trials for the Kriging metamodel is 0.1598, while the RMSE for the RSM metamodel is 

0.014.  This means that RMSE for Kriging metamodel is approximately equal to 11X 

RMSE for RSM.  Note that the greater RMSE the worse is the model. 

RMSEs for the two metamodels for bandwidth (BW) of the passive filter are given in 

Table (4.3). 

Table 4.3: Errors values of RSM and Kriging metamodels for BW 

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

.23381 1.378 1  

 

 

 

0.591 

.23.42 1.374 2 

.23311 1.381 3 

.23333 1.379 4 

.23.22 1.377 5 

.23418 1.383 6 

.23.42 1.374 7 

.23418 1.383 8 

.23412 1.387 9 

.2343. 1.385 10 

 

The normalized RMSEs in Table (4.3) are plotted in Figure (4.4). 

Figure 4.4: NRMSEs for 𝐵𝑊 
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The average RMSE for the filter circuit in Figure (4.4) for the 10 LHC trials of the  

Kriging metamodel is  1.3801, while the RMSE for the RSM metamodel is 0.591.  This 

means that RMSE for Kriging metamodel is approximately equal to 2.33X RMSE of 

RSM. 

4.3.2 BJT amplifier  

Performance parameters of the BJT amplifier shown in Figure (4.5) are modeled using 

the methodology outlined in Section (4.2). Metamodels are derived for the midband 

gain 𝐴 = 𝑉𝑜𝑢𝑡 𝑉𝑖𝑛⁄ , the lower cutoff frequency 𝑓𝑙, and the upper cutoff frequency 𝑓𝐻. 

The design variables ranges are given in Table (4.4). 

Table 4.4: design variables ranges for BJT amplifier 

Design variable Min. value Max. value Unit 

C1 1 10 µf 

C2 1 10 pf 

R 1 10 KΩ 

I 1 10 mA 

 

 

Figure 4.5: BJT amplifier 
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Firstly, the circuit performance parameters are modeled using quadratic RSMs in four 

dimensions. The second-order MBD in Table (3.5) having 65 sample points is used to 

determine responses A, f1, and  fH .  LHC experimental design is then generated having 

the same number of sample points as the MBD to fit the Kriging metamodel; the Kriging 

metamodel activity is repeated using 10 LHC sampling trials. RMSEs and NRMSEs for 

these metamodels are given in Table (4.5).  

Table 4.5: Errors values of RSM and Kriging metamodels for 𝐴 

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

82811. 113.804 1  

 

 

 

95.78 

8281.1 111.366 2 

82814. 111.510 3 

828114 113.829 4 

828181 111.274 5 

828112 111.765 6 

828144 111.524 7 

8281.1 112.317 8 

8281.8 111.309 9 

828.41 110.611 10 

 

The normalized RMSEs in Table (4.5)are plotted in Figure (4.6). 

 

Figure 4.6: NRMSEs for 𝐴 for BJT amplifier 
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From these results, RMSE for Kriging metamodel for the gain 𝐴 is higher than the RSM 

metamodel by approximately 16%. 

The previous activities are repeated for generating quadratic RSMs combined with MBD 

and Kriging metamodels combined with LHC for the lower cutoff frequency𝑓𝑙 and upper 

cutoff frequency fH.  RMSEs and NRMSEs for metamodels for 𝑓𝑙are given in Table (4.6). 

Table 4.6: Errors values of RSM and Kriging metamodels for  𝑓𝑙 

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

82.184 35364 1  

 

 

 

28036 

82.113 35613 2 

82.122 35604 3 

82...1 35201 4 

82.113 35782 5 

82.118 35609 6 

82.14. 35443 7 

82..18 35271 8 

82.18. 35358 9 

828.41 110.611 10 

 

The normalized errors NRMSEs in Table (4.6) are plotted in Figure (4.7). 

 

Figure 4.7: NRMSEs of 𝑓𝑙 for BJT amplifier 
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From these results, RMSE for the Kriging metamodel for the lower cutoff frequency 𝑓𝑙 

is higher than the RSM metamodel by 26%. 

The same procedure is repeated for the upper cutoff frequency 𝑓𝐻of the BJT amplifier. 

RMSEs for the two metamodels are given in the Table (4.7). 

Table 4.7: Errors values of RSM and Kriging metamodels for 𝑓𝐻 

 

Kriging  

RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

82.821 41305 1  

 

 

 

33864 

82.388 41689 2 

82...4 41395 3 

82.331 41783 4 

82..18 41588 5 

82..31 41442 6 

82.413 42000 7 

82.384 41701 8 

82.411 41993 9 

82..11 41578 10 

 

The normalized errors NRMSEs in Table (4.7) are plotted in Figure (4.8). 

Figure 4.8: NRMSEs of  𝑓𝐻 for BJT amplifier 
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From these results, RMSE for the Kriging metamodel for the upper cutoff frequency 𝑓𝑙 

is higher than the RSM metamodel by 23%. 

4.3.3 MOSFET amplifier. 

The performance parameters of the MOSFET amplifier shown in Figure (4.9) are 

modeled using quadratic RSM and Kriging metamodels. For the midband gain 𝐴 =

𝑉𝑜𝑢𝑡 𝑉𝑖𝑛  ⁄ metamodels are derived as functions of the two design variables W1 and W2.  

(the width of the two MOSFETS M1 and M2, respectively). 

 

Figure 4.9: MOSFET amplifier. 

The design variables ranges are given in Table (4.8). 

Table 4.8: design variables ranges for MOSFET amplifier 

Design variable Min. value Max. value Unit 

W1 2 200 µm 

W2 2 200 µm 

R 10 100 KΩ 

C 1 10 Pf 

 

The circuit is modeled using a quadratic RSM in four dimensions. The second-order MBD 

in Table (3.5) having 65 sample points is used to generate the metamodel for  𝐴.  A LHC 
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experimental design is then generated having the same number of sample points as the 

MBD to fit the Kriging metamodel, the Kriging metamodel activity is repeated using 10 

LHC sampling trials. RMSEs and NRMSEs for these metamodels are given in Table 

(4.9).  

Table 4.9: Errors values of RSM and Kriging metamodels for 𝐴 

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

82.1.8 0.528 1  

 

 

 

0.338 

82.1.8 0.529 2 

82.181 0.531 3 

82.1.1 0.536 4 

82.111 0.530 5 

82.1.8 0.529 6 

82.181 0.531 7 

82.1.8 0.529 8 

82.1.8 0.528 9 

82.1.8 0.528 10 

 

The normalized errors NRMSEs in Table (4.9) are plotted in Figure (4.10). 

Figure 4.10: NRMSEs of  𝐴 for MOSFET amplifier 
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From these results, RMSE for the Kriging metamodel for the midband gain  𝐴  is higher 

than the RSM metamodel by 56%. 

4.3.4 Operational amplifier  

Performance parameters of the operational amplifier shown in Figure (4.11) are modeled 

using quadratic RSM and Kriging metamodels. The performance parameters modeled are 

the midband gain A=Vout/Vin  the common- mode- rejection ratio (CMRR) and the power 

dissipation (P).  There are seven design variables W1, W3, W5, W6, W7 W8, and Ibias for 

the corresponding MOSFETs in Figure (4.11). 

 

Figure 4.11: operational amplifier  

The design variables ranges are given in Table (4.10). 

Table 4.10:design variable ranges for Op-amp 

Design variable Min. value Max. value Unit 

W1 10 100 µm 

W3 10 100 µm 

W5 50 100 µm 

W6 200 300 µm 

W7 100 200 µm 

W8 10 100 µm 

𝐼𝑏𝑖𝑎𝑠. 5 25 µA 
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Firstly, the circuit is modeled using quadratic RSMs in seven dimensions. The second-

order MBD in Table (3.5) having 552 sample points is used to generate RSM metamodel 

for A, CMMR and P.  A LHC experimental design is then generated having the same 

number of sample points as the MBD to fit the Kriging metamodel.  The Kriging 

metamodel activity is repeated using 10 LHC sampling trials. RMSEs and NRMSEs for 

these metamodels for A are given in Table (4.11).  

Table 4.11: Error values of RSM and Kriging metamodels for 𝐴 

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

.28..8 764042   1  

 

 

 

148212 

.28.18 764201 2 

.28.41 763987 3 

.28... 764061 4 

.28..1 764158 5 

.28.41 764003 6 

.28.1. 764261 7 

.28.11 764297 8 

.28.18 764351 9 

.28..1 764146 10 

 

The normalized errors NRMSEs in Table (4.11) are plotted in Figure (4.12). 

 

Figure 4.12: NRMSEs of 𝐴 for the operational amplifier 
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From these results, RMSE for the Kriging metamodel for the midband gain 𝐴   is 

approximately equal to 5.15X RMSE for RSM. 

RMSEs for metamodels for 𝐶𝑀𝑅𝑅 of the op-amp are given in Table (4.12). 

Table 4.12: Error values of RSM and Kriging metamodels for 𝐶𝑀𝑅𝑅 

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

4242.2 1366395 1  

 

 

 

304125 

4242.2 1366416 2 

4242.8 1366175 3 

4242.1 1366311 4 

4242.1 1366370 5 

424231 1366420 6 

4242.. 1366196 7 

4242.3 1366234 8 

4242.2 1366402 9 

4242.1 1366323 10 

 

The normalized errors NRMSEs in Table (4.12) are plotted in Figure (4.13). 

 

Figure 4.13: NRMSEs of CMRR for the operational amplifier 
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From these results, RMSE for the Kriging metamodel for the common-mode-rejection-

ratio CMRR is approximately equal to 4.5X RMSE for RSM.  

RMSEs of two metamodels for P of the op-amp are given in Table (4.13). 

Table 4.13: RMSE values for RSM and Kriging metamodels for P 

 

Kriging  

 RMSE for 

RSM 

metamodel 
NRMSE RMSE Trial number 

32111. 389.023 1  

 

 

 

126.699 

321124 388.892 2 

3211.3 389.261 3 

32111. 389.025 4 

32111. 388.997 5 

3211.1 389.318 6 

3211.8 389.230 7 

321113 389.001 8 

3211.1 389.225 9 

32114. 389.542 10 

 

The normalized RMSEs in Table (4.13) are plotted in Figure (4.14). 

 

Figure 4.14: NRMSEs for P for operational amplifier 
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From these results, RMSE for the Kriging metamodel for the common-mode-rejection-

ratio 𝐶𝑀𝑅𝑅 is approximately equal to 3X RMSE for RSM. 

4.4 Discussion 

Based on the results shown in the previous section, it is clear that the maximum difference 

value of NRMSE between RSM and Kriging metamodels is in the passive filter for the 

midband ratio ζ, the error ratio is 1:11.5.  On the other hand, the minimum difference 

value of NRMSE between RSM and Kriging metamodels is in BJT amplifier for the gain 

A, with an error ratio of 1:1.16. 

So, it is clear that the MBD sampling combined with RSM is superior to LHC combined 

with Kriging in all presented examples. 
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CONCLUSIONS AND FUTURE WORK 

 

Metamodeling is used as a way to reduce computational efforts in engineering system 

design while still revealing accurate information about the behavior of the simulation 

model of the engineering system. 

In this thesis, two types of metamodeling techniques - Kriging metamodels generated 

using LHC sampling, and response surface models (RSMs) based on minimum bias 

designs (MBDs) are studied.  Based on Google Scholar search results as discussed in 

Chapter one, the former metamodeling technique (i.e. Kriging metamodel with LHC 

designs) is more recent and gaining popularity in the literature, as compared to the 

classical technique (i.e. RSM metamodels with MBDs) which – as it seems – is phasing 

out. 

 Both metamodeling techniques are applied in this work to different analog integrated 

circuits.  The results show that using minimum bias designs MBDs to obtain RSM 

metamodels improves accuracy in relation to Kriging metamodels with LHCs.  

These results should direct the science community to use RSM with MBDs more 

frequently in metamodeling and not to ignore it. 

 

FUTUTE WORK 

To improve the accuracy of the metamodel, piecewise RSM metamodels with MBDs 

sampling method may be used, whereby the design variables space may be partitioned 

based on validation results for a coarse global (covering the whole design variables space) 

metamodel.  
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 ملخص

 

. رسالة المتكاملة الالكترونية التناظرية.  حول استخدام التصاميم التجريبية في نمذجة الدوائر الخطيب، هدى تركي

  . )المشرف الرئيسي: د. سامي الحمدان، المشرف الثانوي: أ. د. حسام حمد(. 7102ماجستير بجامعة اليرموك.  

 

د او تصميم مثل هذه النماذج نمذجة تولي هو نموذج للنموذج. وتسمى عملية " metamodel" النموذج البديل

"metamodeling".    الذي يجعل المحاكاة وهكذا فان النموذج البديل هو تجريد مبسط للنموذج الأصلي

خدم صبحت النماذج البديلة تستن أسرع مع الحفاظ على دقة مقبولة.  أالحاسوبية المعقدة للنموذج الأصلي أبسط ولك

 النموذج الناجح اختيار دقيق للتصميمات التجريبيةكما يتطلب . والعلميةعلى نطاق واسع في التخصصات الهندسية 

"experimental design ".التصميم التجريبي هو عباره عن مجموعه من القيم المتغيرة و  المناسبة

نين من أكثر النماذج البديلة اث في هذا البحث تم مناقشة  )المدخلات( التي يتم استخدامها لبناء النموذج البديل.

  . " Kriging models" هو والأكثر حداثة "classical response surfaces"           هوالأول  . شهرة

 minimum(MBDs)و " " Latin hypercube (LHC) sampling" التجريبيةمع اثنين من التصاميم 

bias design". .وتطبق كل طريقة في هذا العمل من أجل وضع نماذج لمخرجات الدوائر الإلكترونية التناظرية  

يعطي نتائج أفضل  "MBDs))" مع "classical response surfaces"أن استخدام  البحثوتبين نتائج هذا 

توجيه  البحثعلى هذا  يترتب بناءكما    ."(LHC) " مع "Kriging models"وأدق من النماذج الأكثر شيوعا 

" في بناء النماذج بشكل أكثر RSMمع " "MBDعلى اعتماد طريقة  " ةالمجتمعات البحثية للدوائر المتكامل

 وذلك لثبوت جدواه من حيث دقته في محاكاة النموذج الأصلي.
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